3,078
edits
Changes
no edit summary
LC-NE and [[ACC]] may modulate [[attention|aroused attention]] in a novel environment and new social environment<ref>Heinrich S Gompf, Christine Mathai, Patrick M Fuller, David A Wood, Nigel P Pedersen, Clifford B Saper, and Jun Lu, 2011, Locus coeruleus (LC) and anterior cingulate cortex sustain wakefulness in a novel environment, Neurosci. Oct 27, 2010; 30(43): 14543–14551.</ref>.
Existing evidence suggests that the locus coeruleus–norepinephrine (LC-NE) system serves to modulate neural gain throughout the brain<ref>Aston-Jones, G. & Cohen, J.D. An integrative theory of locus coeruleus–norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403–450 (2005).</ref><ref>Gilzenrat, M.S., Nieuwenhuis, S., Jepma, M. & Cohen, J.D. Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function. Cogn. Affect. Behav. Neurosci. 10, 252–269 (2010).</ref><ref>Jepma, M. & Nieuwenhuis, S. Pupil diameter predicts changes in the exploration-exploitation trade-off: evidence for the adaptive gain theory. J. Cogn. Neurosci. 23, 1587–1596 (2011).</ref><ref>Waterhouse, B.D., Moises, H.C. & Woodward, D.J. Noradrenergic modulation of somatosensory cortical neuronal responses to lontophoretically applied putative neurotransmitters. Exp. Neurol. 69, 30–49 (1980).</ref><ref><ref>Waterhouse, B.D., Moises, H.C., Yeh, H.H., Geller, H.M. & Woodward, D.J. Comparison of norepinephrine- and benzodiazepine-induced augmentation of Purkinje cell responses to gamma-aminobutyric acid (GABA). J. Pharmacol. Exp. Ther. 228, 257–267 (1984).</ref><ref>Waterhouse, B.D. & Woodward, D.J. Interaction of norepinephrine with cerebrocortical activity evoked by stimulation of somatosensory afferent pathways in the rat. Exp. Neurol. 67, 11–34 (1980). </ref>