Actions

ACC

From Deliberative Democracy Institiute Wiki


The anterior cingulate cortex (ACC) is the frontal part of the cingulate cortex, that resembles a "collar" form around the corpus callosum, the fibrous bundle that relays neural signals between the right and left cerebral hemispheres of the brain. It consists of Brodmann areas 24, 32 and 33. It appears to play a role in a wide variety of autonomic functions, such as regulating blood pressure and heart rate, as well as rational cognitive functions, such as reward anticipation, decision making, empathy[1] and emotion.[2][3]. ACC gyrus is involved in learning social values[4]. ACC is also necessary for an appraisal of the energetic cost versus benefits of actions, and a preference to expend effort to achieve a goal.

ACC sulcus may be required for learning of action values[5]. Similar regions in ACC have also been shown to encode decision uncertainty[6]

In decision making it is thought to detect conflicts between two deductions[7][8][9] and evaluating the rewards of actions[10]. On the integration of these finding please read this article.D1 (dopamine 1) receptor blockade in ACC reduces preference for expending effort for rats[11].

Medial surface of left cerebral hemisphere, with anterior cingulate highlighted.
Medial surface of left cerebral hemisphere, with anterior cingulate highlighted.


In order to resolve an emotional conflict the rostalACC inhibits the amygdala (or FFFF mechanism)[12]. This is strengthing by the findings that in panic disorder, the volume of the the ACC is reduced, [13] . When the ACC (ACcd) has deficient in activation, there seem to be more impolsivity in ADHD compered to control group[14]. When anticipating pain, women domnstrate more activation of the ACC[15].

It seems that LC-NE relese Norepinephrine to ACC, which then elvate wakeness. The ACC send signals to the LC, to maintain wakeness while new stimules are precived[16]

There is a link between ACC activation and pupil size[17]

reduction in right ACC volume correlates to aggression and defiance[18]

dorsal ACC

dACC

Hypotheses about its function include guiding reward-based decision making[19], monitoring for conflict between competing responses[20] and predicting task difficulty[21]. Precise mechanisms of dACC function remain unknown. It was found that dACC is involved in adapting behaviour.[22], and help focus attention on the desired option, when conflict arise[23].


It is thought that the dorsal ACC is primarly involved in cognitive processing[24]. It is part of the learning mechanism, that learn the positive and negative outcomes of actions in neutral tasks[25][26][27][28] and with correlation with rostral ACC, it is involved in emotional learning. It is also a reward mechanism, that gives "globals enrgizing factor", to actions that in the past seems to be rewarding[29]. Rats with lisions in the ACC, prefer less effortful mission with less reward, to tasks with more effortful with more reward[30].The ACC motivation mechanism is dependent on dopamin[31][32].

Hypothesis: The Meutation in Dopamin receptor D2 may lower the amount of dopamin recived by the ACC, thus it may be the cause that make people with Atention Deficit Disorder (ADD), have lack of motivation to engage in effortful actions and decision making.

A Role for the Human Dorsal Anterior Cingulate Cortex in Fear Expression, 2007 - dACC has a major role in fear expression. When electrode stimulus was introduced to the dACC during head operations, patients reported high level of anxiety, where as when the regions was removed, anxiety symptoms were reduced[33]. See also the page on fear.

Dorsal ACC decision making system

rostral ACC

rACC

Also called ventral ACC

It is thought that rostral ACC id involved in emotional processing[34]. Sadness enhances the experience of pain via neural activation in the anterior cingulate cortex and amygdala[35].The Rostral Anterior Cingulate Cortex Modulates the Efficiency of Amygdala-Dependent Fear Learning[36].

It seems that rostral ACC is in the side of the critique[37] and have negative feedback on selection of actions. it is highly active in depression[38]. rACC is correlated with error detection[39][40]. It is used in emotional conflicts[41] but not with neutral conflicts[42][43][44].

rACC is negatively correlated with amygdala activity in conflict resolution tasks. it is suggested that the rACC down-regulate the amygdala[45]. (And may reduce anger or anxiety?)

Liberals and ACC

Liberals have higher ACC gray volume[46]. ACC is connected to conflict resultion (rACC to social conflict and dACC to non-social conflict). Reward valence modulates conflict-driven attentional adaptation in the ACC[47]. ACC appear to encode negatively-valenced components, such as cost or effort[48]. Greater liberalism was associated with stronger conflict-related anterior cingulate activity, suggesting greater neurocognitive sensitivity to cues for altering a habitual response pattern, while conservatives have larger volume of right amygdala[49][50] As well as more avodience of doing, due to the highten percived costs that the higher volume of the ACC can cause[51].

The ACC is important for responce time, therefore it was suggested that the ACC is related to "global energizing factor"[52]

ACC is enlarged in people with large social networks.

Aggresivnce and ACC

Childrens with aggressive problems (disruptive behavior disorders) show reduced activity in the ACC[53].

Further readings

Other close areas

  • Theory of cognitive dissonance[55]

References

  1. Jump up http://ccare.stanford.edu/node/89
  2. Jump up Decety, J., & Jackson, P.L. (2004). The functional architecture of human empathy. Behavioral and Cognitive Neuroscience Reviews, 3, 71-100.
  3. Jump up Jackson P.L., Brunet E., Meltzoff A.N., Decety J., 2006 Empathy examined through the neural mechanisms involved in imagining how I feel versus how you feel pain: An event-related fMRI study, Neuropsychologia, 44, pp. 752–61
  4. Jump up Rushworth M, Behrens T, Rudebeck P, Walton M. Contrasting roles for cingulate and orbitofrontal cortex in decisions and social behavior. Trends In Cognitive Sciences. 2007;11: 168– 176.
  5. Jump up Kennerley SW, Walton ME, Behrens TEJ, Buckley MJ, Rushworth MFS. Optimal decision-making and the anterior cingulate cortex. Nature Neuroscience. 2006;9: 940– 947.
  6. Jump up Behrens TE, Woolrich MW, Walton ME, Rushworth MF. Learning the value of information in an uncertain world. Nature Neuroscience. 2007;10: 1214–1221.
  7. Jump up Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402(6758), 179–181.
  8. Jump up Neurocognitive correlates of liberalism and conservatism, 2007, Amodio et al. Nature neuroscience (Summery in Hebrew)
  9. Jump up Jin Fan, Patrick R. Hof, Kevin G. Guise, John A. Fossella and Michael I. Posner, The Functional Integration of the Anterior Cingulate Cortex during Conflict Processing, Cerebral Cortex, Volume 18 Issue 4, p. 796-805.
  10. Jump up Kennerley et al., Optimal decision making and the anterior cingulate cortex, Nature Neuroscience 9, 940 - 947 (2006)
  11. Jump up Schweimer J, Hauber W. Dopamine D1 receptors in the anterior cingulate cortex regulate effort-based decision-making. Learning & Memory. 2006;13: 777–782
  12. Jump up Amit Etkin, Tobias Egner, Daniel M. Peraza, Eric R. Kandel and Joy Hirsch, Resolving Emotional Conflict: A Role for the Rostral Anterior Cingulate Cortex in Modulating Activity in the Amygdala, Neuron 51, 1–12, September 7, 2006
  13. Jump up Takeshi et al., Anterior cingulate cortex volume reduction in patients with panic disorder, Psychiatry and Clinical Neurosciences 2008; 62: 322–330
  14. Jump up low ACcd activity and ADHD impulsivity, 1999
  15. Jump up Gender difrences in ACC before pain, 2005
  16. Jump up Heinrich S. Gompf, Christine Mathai, Patrick M. Fuller, David A. Wood, Nigel P. Pedersen, Clifford B. Saper, and Jun Lu (2010) Locus Ceruleus and Anterior Cingulate Cortex Sustain Wakefulness in a Novel Environment, The Journal of Neuroscience, 27 October 2010, 30(43): 14543-14551
  17. Jump up Critchley, HD, Tang, J, Glaser, D, Butterworth, B, Dolan, RJ (2005) Anterior cingulate activity during error and autonomic response
  18. Jump up Right anterior cingulate: A neuroanatomical correlate of aggression and defiance in boys.
  19. Jump up illiams, Z. M., Bush, G., Rauch, S. L., Cosgrove, G. R. & Eskandar, E. N. Human anterior cingulate neurons and the integration of monetary reward with motor responses. Nature Neurosci.7, 1370–1375 (2004).
  20. Jump up otvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S. & Cohen, J. D. Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature 402, 179–181 (1999)
  21. Jump up rown, J. W. & Braver, T. S. Learned predictions of error likelihood in the anterior cingulate cortex. Science 307, 1118–1121 (2005)
  22. Jump up Sheth, Sameer A., Matthew K. Mian, Shaun R. Patel, Wael F. Asaad, Ziv M. Williams, Darin D. Dougherty, George Bush, and Emad N. Eskandar. "Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation." Nature (2012).
  23. Jump up Weissman, D. H., Gopalakrishnan, A., Hazlett, C. J., & Woldorff, M. G. (2005). Dorsal anterior cingulate cortex resolves conflict from distracting stimuli by boosting attention toward relevant events. Cerebral Cortex, 15(2), 229–237.
  24. Jump up Bush G, Luu P & Posner MI, Cognotve and emotional influances in the anterior cingulate cotrex, Trends. Cogn. Sci. 4, 215-222 (2000)
  25. Jump up Botvinick M; Nystrom LE; Fissell K; Carter CS; Cohen JD: Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature 1999; 402:179—181
  26. Jump up Kerns JG; Cohen JD; MacDonald AW 3rd; Cho RY; Stenger VA; Carter CS: Anterior cingulate conflict monitoring and adjustments in control. Science 2004; 303:1023—1026
  27. Jump up Carter CS; Macdonald AM; Botvinick M; Ross LL; Stenger VA; Noll D; Cohen JD: Parsing executive processes: strategic vs evaluative functions of the anterior cingulate cortex. Proc Natl Acad Sci USA 2000; 97:1944—1948
  28. Jump up Egner T; Hirsch J: The neural correlates and functional integration of cognitive control in a Stroop task. Neuroimage 2005; 24:539—547
  29. Jump up Struss DT et al.,2005, Multiple frontal systems controlling response speed, Neuropshichologia, 43: 396-417
  30. Jump up Walton ME at al, 2003, Fanctional specilization within medial frontal cortex of the antirior cingulate for evaluating effort-related decisions, J Neurosci, 23: 6475-6479
  31. Jump up Assadi SM, Yucel M & Pantelis C, 2009, Dopamin Modulates neural netowrks involved in effort-based decision making, Neurosci Biobehav, 33: 383-393
  32. Jump up Alexander MP, 2001, Chronic akinetic mutism after mesanphilic-diancphelick infraction: remediated with dopaminergic medications, Neurohabil Nural Repai, 15:151-156
  33. Jump up Meyer G, McElhaney M, Martin W, McGraw CP (1973): Stereotactic cin- gulotomy with results of acute stimulation and serial psychological testing, In: Laitinen LV, Livingston KE, editors. Surgical Approaches in Psychiatry. Lancaster, United Kingdom: MTP, Baltimore, 39 –58.
  34. Jump up Bush G, Luu P & Posner MI, Cognotve and emotional influances in the anterior cingulate cotrex, Trends. Cogn. Sci. 4, 215-222 (2000)
  35. Jump up [ http://www.sciencedirect.com/science/article/pii/S1053811909012658Atsou et al., Sadness enhances the experience of pain via neural activation in the anteriorcingulatecortex and amygdala: An fMRI study, 2009]
  36. Jump up Bissieree et al., The Rostral Anterior Cingulate Cortex Modulates the Efficiency of Amygdala-Dependent Fear Learning, 2008
  37. Jump up Etkin et al., Emotional processing in anterior cingulate and medial prefrontal cortex, 2011
  38. Jump up Wagner G, Sinsel E, Sobanski T, et al. Cortical inefficiency in patients with unipolar depression: an event-related FMRI study with the Stroop task. Biol Psychiatry 2006;59:958-65.
  39. Jump up Polli et al, Rostral and dorsal anterior cingulate cortex make dissociable contributions during antisaccade error commission
  40. Jump up Kiehl et al, Error processing and the rostral anterior cingulate: An event-related fMRI study, 2000
  41. Jump up Etkin A et al.,Resolving Emotional Conflict: A Role for the Rostral Anterior Cingulate Cortex in Modulating Activity in the Amygdala, Neuron, Volume 51, Issue 6, 871-882, 21 September 2006
  42. Jump up Martin E. Maier, Impaired Conflict Adaptation in an Emotional Task Context following Rostral Anterior Cingulate Cortex Lesions in Humans, 2012
  43. Jump up Egner T; Etkin A; Gale S; Hirsch J: Dissociable neural systems resolve conflict from emotional versus nonemotional distracters. Cereb Cortex 2008; 18:1475—1484
  44. Jump up Etkin A; Egner T; Peraza DM; Kandel ER; Hirsch J: Resolving emotional conflict: a role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron 2006; 51:871—882
  45. Jump up Etkin, A et al. Resolving Emotional Conflict: A Role for the Rostral Anterior Cingulate Cortex in Modulating Activity in the Amygdala, 2006
  46. Jump up Kanai R, Feilden T, Firth C, Rees G (2011) Political orientations are correlated with brain structure in young adults. Curr Biol 21: 677–680.
  47. Jump up van Steenbergen, Guido P.H. Band and Bernhard Hommel, Reward valence modulates conflict-driven attentional adaptation: Electrophysiological evidence, 2012
  48. Jump up Walton ME, Bannerman DM, Alterescu K, Rushworth MFS. Functional specialization within medial frontal cortex of the anterior cingulate for evaluating effort-related decisions. Journal of Neuroscience. 2003;23: 6475– 6490.
  49. Jump up Amodio, D. M., Jost, J. T., Master, S. L., & Yee, C. M. (2007). Neurocognitive correlates of liberalism and conservatism. Nature neuroscience, 10(10), 1246-1247.
  50. Jump up Kanai, R., Feilden, T., Firth, C., & Rees, G. (2011). Political orientations are correlated with brain structure in young adults. Current Biology : CB, 21(8), 677–80. doi:10.1016/j.cub.2011.03.017
  51. Jump up Suggestion: Tal Yaron, 29/6/2014
  52. Jump up Stuss, Donald T., Michael P. Alexander, Tim Shallice, Terence W. Picton, Malcolm A. Binns, Ronald Macdonald, Agnes Borowiec, and Douglas I. Katz. "Multiple frontal systems controlling response speed." Neuropsychologia 43, no. 3 (2005): 396-417.
  53. Jump up Gavita, O. A., Capris, D., Bolno, J., & David, D. (2012). Anterior cingulate cortex findings in child disruptive behavior disorders.: A meta-analysis. Aggression and Violent Behavior, 17(6), 507–513.
  54. Jump up Martino et al., Functional Brain Correlates of Social and Non-Social Processes in Autism Spectrum Disorders: an ALE Meta-Analysis, 2009
  55. Jump up Festinger, L. (1957). A theory ofcognitive dissonance. Evanston, IL: Row, Peterson