Actions

Difference between revisions of "DACC"

From Deliberative Democracy Institiute Wiki

(Created page with "Hypotheses about its function include guiding reward-based decision making<ref>illiams, Z. M., Bush, G., Rauch, S. L., Cosgrove, G. R. & Eskandar, E. N. Human anterior cingula...")
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
Hypotheses about its function include guiding reward-based decision making<ref>illiams, Z. M., Bush, G., Rauch, S. L., Cosgrove, G. R. & Eskandar, E. N. Human anterior cingulate neurons and the integration of monetary reward with motor responses. Nature Neurosci.7, 1370–1375 (2004).</ref>, monitoring for conflict between competing responses<ref>otvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S. & Cohen, J. D. Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature 402, 179–181 (1999)</ref> and predicting task difficulty<ref>rown, J. W. & Braver, T. S. Learned predictions of error likelihood in the anterior cingulate cortex. Science 307,
 
Hypotheses about its function include guiding reward-based decision making<ref>illiams, Z. M., Bush, G., Rauch, S. L., Cosgrove, G. R. & Eskandar, E. N. Human anterior cingulate neurons and the integration of monetary reward with motor responses. Nature Neurosci.7, 1370–1375 (2004).</ref>, monitoring for conflict between competing responses<ref>otvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S. & Cohen, J. D. Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature 402, 179–181 (1999)</ref> and predicting task difficulty<ref>rown, J. W. & Braver, T. S. Learned predictions of error likelihood in the anterior cingulate cortex. Science 307,
1118–1121 (2005)</ref>. Precise mechanisms of dACC function remain unknown. It was found that dACC is involved in adapting behaviour.<ref>[http://ziv.mgh.harvard.edu/pdf/nature11239.pdf Sheth, Sameer A., Matthew K. Mian, Shaun R. Patel, Wael F. Asaad, Ziv M. Williams, Darin D. Dougherty, George Bush, and Emad N. Eskandar. "Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation." Nature (2012).]</ref>.
+
1118–1121 (2005)</ref>. later it was further demonstrated that dACC activation corrolate to the difficulty of deciding between options<ref>[http://www.pni.princeton.edu/ncc/PDFs/Anterior%20Cingulate%20&%20ERN/fMRI/Shenhav%20et%20al%20(Nat%20Neuro%2014).pdf Shenhav A, Straccia MA, Cohen JD & Botvinick MM (2014). Anterior cingulate engagement in a foraging context reflects choice difficulty rather than foraging value.  Nature Neuroscience, 17:1249-1254.]</ref>. Precise mechanisms of dACC function remain unknown. It was found that dACC is involved in adapting behaviou.<ref>[http://ziv.mgh.harvard.edu/pdf/nature11239.pdf Sheth, Sameer A., Matthew K. Mian, Shaun R. Patel, Wael F. Asaad, Ziv M. Williams, Darin D. Dougherty, George Bush, and Emad N. Eskandar. "Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation." Nature (2012).]</ref>.
  
  
 
It is thought that the dorsal ACC is primarly involved in cognitive processing<ref>Bush G, Luu P & Posner MI, Cognotve and emotional influances in the anterior cingulate cotrex, Trends. Cogn. Sci. 4, 215-222 (2000)</ref>. It is part of the learning mechanism, that learn the positive and negative outcomes of actions in neutral tasks<ref>Botvinick  M;  Nystrom  LE;  Fissell  K;  Carter  CS;  Cohen  JD:  Conflict monitoring versus selection-for-action in anterior cingulate cortex.  Nature  1999; 402:179—181</ref><ref>Kerns  JG;  Cohen  JD;  MacDonald  AW  3rd;  Cho  RY;  Stenger  VA;  Carter  CS:  Anterior cingulate conflict monitoring and adjustments in control.  Science  2004; 303:1023—1026</ref><ref>Carter  CS;  Macdonald  AM;  Botvinick  M;  Ross  LL;  Stenger  VA;  Noll  D;  Cohen  JD:  Parsing executive processes: strategic vs evaluative functions of the anterior cingulate cortex.  Proc Natl Acad Sci USA  2000; 97:1944—1948</ref><ref>Egner  T;  Hirsch  J:  The neural correlates and functional integration of cognitive control in a Stroop task.  Neuroimage  2005; 24:539—547</ref> and with correlation with rostral ACC, it is involved in emotional learning. It is also a reward mechanism, that gives "globals enrgizing factor", to actions that in the past seems to be rewarding<ref>Struss DT et al.,2005, Multiple frontal systems controlling response speed, ''Neuropshichologia'', 43: 396-417</ref>. Rats with lisions in the ACC, prefer less effortful mission with less reward, to tasks with more effortful with more reward<ref>Walton ME at al, 2003, Fanctional specilization within medial frontal cortex  of the antirior cingulate for evaluating effort-related decisions, ''J Neurosci'', 23: 6475-6479</ref>.The ACC motivation mechanism is dependent on dopamin<ref>Assadi SM, Yucel M & Pantelis C, 2009, Dopamin Modulates neural netowrks involved in effort-based decision making, ''Neurosci Biobehav'', 33: 383-393</ref><ref>Alexander MP, 2001, Chronic akinetic mutism after mesanphilic-diancphelick infraction: remediated with dopaminergic medications, ''Neurohabil Nural Repai'', 15:151-156</ref>. The Meutation in Dopamin receptor D2 may lower the amount of dopamin recived by the ACC, thus it may be the cause that make people with Atention Deficit Disorder ([[ADD]]), have lack of motivation to engage in effortful actions and decision making.
 
It is thought that the dorsal ACC is primarly involved in cognitive processing<ref>Bush G, Luu P & Posner MI, Cognotve and emotional influances in the anterior cingulate cotrex, Trends. Cogn. Sci. 4, 215-222 (2000)</ref>. It is part of the learning mechanism, that learn the positive and negative outcomes of actions in neutral tasks<ref>Botvinick  M;  Nystrom  LE;  Fissell  K;  Carter  CS;  Cohen  JD:  Conflict monitoring versus selection-for-action in anterior cingulate cortex.  Nature  1999; 402:179—181</ref><ref>Kerns  JG;  Cohen  JD;  MacDonald  AW  3rd;  Cho  RY;  Stenger  VA;  Carter  CS:  Anterior cingulate conflict monitoring and adjustments in control.  Science  2004; 303:1023—1026</ref><ref>Carter  CS;  Macdonald  AM;  Botvinick  M;  Ross  LL;  Stenger  VA;  Noll  D;  Cohen  JD:  Parsing executive processes: strategic vs evaluative functions of the anterior cingulate cortex.  Proc Natl Acad Sci USA  2000; 97:1944—1948</ref><ref>Egner  T;  Hirsch  J:  The neural correlates and functional integration of cognitive control in a Stroop task.  Neuroimage  2005; 24:539—547</ref> and with correlation with rostral ACC, it is involved in emotional learning. It is also a reward mechanism, that gives "globals enrgizing factor", to actions that in the past seems to be rewarding<ref>Struss DT et al.,2005, Multiple frontal systems controlling response speed, ''Neuropshichologia'', 43: 396-417</ref>. Rats with lisions in the ACC, prefer less effortful mission with less reward, to tasks with more effortful with more reward<ref>Walton ME at al, 2003, Fanctional specilization within medial frontal cortex  of the antirior cingulate for evaluating effort-related decisions, ''J Neurosci'', 23: 6475-6479</ref>.The ACC motivation mechanism is dependent on dopamin<ref>Assadi SM, Yucel M & Pantelis C, 2009, Dopamin Modulates neural netowrks involved in effort-based decision making, ''Neurosci Biobehav'', 33: 383-393</ref><ref>Alexander MP, 2001, Chronic akinetic mutism after mesanphilic-diancphelick infraction: remediated with dopaminergic medications, ''Neurohabil Nural Repai'', 15:151-156</ref>. The Meutation in Dopamin receptor D2 may lower the amount of dopamin recived by the ACC, thus it may be the cause that make people with Atention Deficit Disorder ([[ADD]]), have lack of motivation to engage in effortful actions and decision making.
  
[[A Role for the Human Dorsal Anterior Cingulate Cortex in Fear Expression, 2007]] - dACC has a major role in [[fear]] expression. When electrode stimulus was introduced to the dACC during head operations, patients reported high level of anxiety, where as when the regions was removed, anxiety symptoms were reduced<ref>Meyer G, McElhaney M, Martin W, McGraw CP (1973): Stereotactic cin- gulotomy with results of acute stimulation and serial psychological testing, In: Laitinen LV, Livingston KE, editors. Surgical Approaches in Psychiatry. Lancaster, United Kingdom: MTP, Baltimore, 39 –58.</ref>. See also the page on [[fear]].
+
[[A Role for the Human Dorsal Anterior Cingulate Cortex in Fear Expression, 2007]] - dACC has a major role in [[fear]] expression. When electrode stimulus was introduced to the dACC during head operations, patients reported high level of anxiety, where as when the regions was removed, anxiety symptoms were reduced<ref>Meyer G, McElhaney M, Martin W, McGraw CP (1973): Stereotactic cin- gulotomy with results of acute stimulation and serial psychological testing, In: Laitinen LV, Livingston KE, editors. Surgical Approaches in Psychiatry. Lancaster, United Kingdom: MTP, Baltimore, 39 –58.</ref>. under time pressuer, the emotional stropp decision is becoming even slower<ref>[http://onlinelibrary.wiley.com/doi/10.1348/000712601162293/abstract;jsessionid=682961C4183734643B72DAC43CBB84EB.f01t02 2010, The role of time pressure on the emotional Stroop task]</ref>. See also the page on [[fear]].
  
 
[[Dorsal ACC decision making system]]
 
[[Dorsal ACC decision making system]]
Line 11: Line 11:
 
==References==
 
==References==
 
<references/>
 
<references/>
 +
 +
[[category: brain regions]]

Latest revision as of 11:48, 31 December 2014

Hypotheses about its function include guiding reward-based decision making[1], monitoring for conflict between competing responses[2] and predicting task difficulty[3]. later it was further demonstrated that dACC activation corrolate to the difficulty of deciding between options[4]. Precise mechanisms of dACC function remain unknown. It was found that dACC is involved in adapting behaviou.[5].


It is thought that the dorsal ACC is primarly involved in cognitive processing[6]. It is part of the learning mechanism, that learn the positive and negative outcomes of actions in neutral tasks[7][8][9][10] and with correlation with rostral ACC, it is involved in emotional learning. It is also a reward mechanism, that gives "globals enrgizing factor", to actions that in the past seems to be rewarding[11]. Rats with lisions in the ACC, prefer less effortful mission with less reward, to tasks with more effortful with more reward[12].The ACC motivation mechanism is dependent on dopamin[13][14]. The Meutation in Dopamin receptor D2 may lower the amount of dopamin recived by the ACC, thus it may be the cause that make people with Atention Deficit Disorder (ADD), have lack of motivation to engage in effortful actions and decision making.

A Role for the Human Dorsal Anterior Cingulate Cortex in Fear Expression, 2007 - dACC has a major role in fear expression. When electrode stimulus was introduced to the dACC during head operations, patients reported high level of anxiety, where as when the regions was removed, anxiety symptoms were reduced[15]. under time pressuer, the emotional stropp decision is becoming even slower[16]. See also the page on fear.

Dorsal ACC decision making system

References

  1. illiams, Z. M., Bush, G., Rauch, S. L., Cosgrove, G. R. & Eskandar, E. N. Human anterior cingulate neurons and the integration of monetary reward with motor responses. Nature Neurosci.7, 1370–1375 (2004).
  2. otvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S. & Cohen, J. D. Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature 402, 179–181 (1999)
  3. rown, J. W. & Braver, T. S. Learned predictions of error likelihood in the anterior cingulate cortex. Science 307, 1118–1121 (2005)
  4. Shenhav A, Straccia MA, Cohen JD & Botvinick MM (2014). Anterior cingulate engagement in a foraging context reflects choice difficulty rather than foraging value. Nature Neuroscience, 17:1249-1254.
  5. Sheth, Sameer A., Matthew K. Mian, Shaun R. Patel, Wael F. Asaad, Ziv M. Williams, Darin D. Dougherty, George Bush, and Emad N. Eskandar. "Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation." Nature (2012).
  6. Bush G, Luu P & Posner MI, Cognotve and emotional influances in the anterior cingulate cotrex, Trends. Cogn. Sci. 4, 215-222 (2000)
  7. Botvinick M; Nystrom LE; Fissell K; Carter CS; Cohen JD: Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature 1999; 402:179—181
  8. Kerns JG; Cohen JD; MacDonald AW 3rd; Cho RY; Stenger VA; Carter CS: Anterior cingulate conflict monitoring and adjustments in control. Science 2004; 303:1023—1026
  9. Carter CS; Macdonald AM; Botvinick M; Ross LL; Stenger VA; Noll D; Cohen JD: Parsing executive processes: strategic vs evaluative functions of the anterior cingulate cortex. Proc Natl Acad Sci USA 2000; 97:1944—1948
  10. Egner T; Hirsch J: The neural correlates and functional integration of cognitive control in a Stroop task. Neuroimage 2005; 24:539—547
  11. Struss DT et al.,2005, Multiple frontal systems controlling response speed, Neuropshichologia, 43: 396-417
  12. Walton ME at al, 2003, Fanctional specilization within medial frontal cortex of the antirior cingulate for evaluating effort-related decisions, J Neurosci, 23: 6475-6479
  13. Assadi SM, Yucel M & Pantelis C, 2009, Dopamin Modulates neural netowrks involved in effort-based decision making, Neurosci Biobehav, 33: 383-393
  14. Alexander MP, 2001, Chronic akinetic mutism after mesanphilic-diancphelick infraction: remediated with dopaminergic medications, Neurohabil Nural Repai, 15:151-156
  15. Meyer G, McElhaney M, Martin W, McGraw CP (1973): Stereotactic cin- gulotomy with results of acute stimulation and serial psychological testing, In: Laitinen LV, Livingston KE, editors. Surgical Approaches in Psychiatry. Lancaster, United Kingdom: MTP, Baltimore, 39 –58.
  16. 2010, The role of time pressure on the emotional Stroop task