Difference between revisions of "Decision making in social networks"
From Deliberative Democracy Institiute Wiki
(→Max size of personal network) |
(→References) |
||
(3 intermediate revisions by the same user not shown) | |||
Line 11: | Line 11: | ||
==Volume of propogation== | ==Volume of propogation== | ||
− | According to Prato law, 20% of the people creates 80% of the massaging<ref>[http://research.microsoft.com/en-us/projects/ldg/a05-zhu.pdf Zhu, K., Hui, P., Chen, Y., Fu, X., & Li, W. (2011). Exploring user social behaviors in mobile social applications. In Proceedings of the 4th Workshop on Social Network Systems (p. 3).]</ref>. | + | According to Prato law, 20% of the people creates 80% of the massaging<ref>[http://yil6.inet-tr.org.tr/extreme-democracy/Chapter%20Three-Shirky.pdf Shirky, C. (2003). Power laws, weblogs, and inequality. Clay Shirky’s Writings about the Internet, 8.]</ref> and complat yo the power-law distrebution<ref>[http://research.microsoft.com/en-us/projects/ldg/a05-zhu.pdf Zhu, K., Hui, P., Chen, Y., Fu, X., & Li, W. (2011). Exploring user social behaviors in mobile social applications. In Proceedings of the 4th Workshop on Social Network Systems (p. 3).]</ref>. |
+ | |||
==Network topology== | ==Network topology== | ||
===number of hops between members=== | ===number of hops between members=== | ||
− | Networks tend to connect all members in maximum of six hops<ref>[http://research.microsoft.com/en-us/projects/ldg/a05-zhu.pdf Zhu, K., Hui, P., Chen, Y., Fu, X., & Li, W. (2011). Exploring user social behaviors in mobile social applications. In Proceedings of the 4th Workshop on Social Network Systems (p. 3).]</ref>. | + | Networks tend to connect all members in maximum of six hops<ref>Travers, J., & Milgram, S. (1969). An experimental study of the small world problem. Sociometry, 425–443.</ref><ref>[http://research.microsoft.com/en-us/projects/ldg/a05-zhu.pdf Zhu, K., Hui, P., Chen, Y., Fu, X., & Li, W. (2011). Exploring user social behaviors in mobile social applications. In Proceedings of the 4th Workshop on Social Network Systems (p. 3).]</ref>. |
===Max size of personal network=== | ===Max size of personal network=== | ||
Line 32: | Line 33: | ||
[[category: groups]] | [[category: groups]] | ||
[[category: deliberation]] | [[category: deliberation]] | ||
− | [[category: | + | [[category: online]] |
Latest revision as of 08:36, 15 February 2016
Contents
The speed of meme propogation
Hi delta of percived Value make meme propogate faster
In a theoretical model on decisions in social networks (also called innovation adaptation), it was found that as the gap between the individual ́s perception of the options is high, the adoption speed increases if the dispersion of early adopters grows[1].
Long Tail law of speed of propogation
Meme propagate through 50% of a network in in short time, and reach 80% in longer time (in students connected through a mutual social network it takes 10 minutes to reach 50% and about 100 minutes to reach 80%). In Sina, a chinese microblogging network it was also found that memes propagate in bursts of power-law distribution, from very small hubs of opinion leaders[2]
Common opinion hub make meme propogate faster
It was also found that when there are hubs of common opinion the spread of adopting new ideas become faster[3].
Volume of propogation
According to Prato law, 20% of the people creates 80% of the massaging[4] and complat yo the power-law distrebution[5].
Network topology
number of hops between members
Networks tend to connect all members in maximum of six hops[6][7].
Max size of personal network
In twitter it seems that Dunbar's number is valid[8]
Opinion Change
Theory: Social influence networks and opinion change[9].
Opinion will change accroding to the following dinamic:
- Cognitive personal weighing average: the influence of a decision on them.
- The social relation and connection to other actors and the delta of decision from the other actors.
- Determinism (groupthink): the relations to the others will yield groupthink.
- Continuance: The changing of opinion will occur until the available option will play themselves up.
References
<references>- ↑ Laciana, C. E., & Rovere, S. L. (2011). Ising-like agent-based technology diffusion model: Adoption patterns vs. seeding strategies. Physica A: Statistical Mechanics and Its Applications, 390(6), 1139–1149.
- ↑ Yuanyuan, B., & Zhanhong, X. (2011). Human activity pattern on microblogging interaction. In Information Management, Innovation Management and Industrial Engineering (ICIII), 2011 International Conference on (Vol. 3, pp. 303–306).
- ↑ Laciana, C. E., & Rovere, S. L. (2011). Ising-like agent-based technology diffusion model: Adoption patterns vs. seeding strategies. Physica A: Statistical Mechanics and Its Applications, 390(6), 1139–1149.
- ↑ Shirky, C. (2003). Power laws, weblogs, and inequality. Clay Shirky’s Writings about the Internet, 8.
- ↑ Zhu, K., Hui, P., Chen, Y., Fu, X., & Li, W. (2011). Exploring user social behaviors in mobile social applications. In Proceedings of the 4th Workshop on Social Network Systems (p. 3).
- ↑ Travers, J., & Milgram, S. (1969). An experimental study of the small world problem. Sociometry, 425–443.
- ↑ Zhu, K., Hui, P., Chen, Y., Fu, X., & Li, W. (2011). Exploring user social behaviors in mobile social applications. In Proceedings of the 4th Workshop on Social Network Systems (p. 3).
- ↑ Gonçalves, B., Perra, N., & Vespignani, A. (2011). Modeling users’ activity on twitter networks: Validation of dunbar's number. PloS One, 6(8), e22656.
- ↑ Friedkin, N. E., & Johnsen, E. C. (1999). Social influence networks and opinion change. Advances in Group Processes, 16(1), 1–29.