Open main menu

Deliberative Democracy Institiute Wiki β

Changes

Dopamine

447 bytes added, 01:50, 30 June 2014
no edit summary
[[Dopamine|Dopamine]] depletion in [[Ventral stratium|ventral striatum]] reduces propensity for physical effort <ref>Salamone JD, Correa M, Farrar A, Mingote SM. Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology. 2007;191: 461– 482.</ref> D1 ([[dopamine]] 1) receptor blockade in [[ACC]] reduces preference for expending effort for rats<ref>Schweimer J, Hauber W. Dopamine D1 receptors in the anterior cingulate cortex regulate effort-based decision-making. Learning & Memory. 2006;13: 777–782</ref>.It is non-discriminative between reward types, dopaminergic firing in [[VTA]] does appear to reflect subjective (action) value with integrated responses to both delay and reward amount<ref>Roesch MR, Calu DJ, Schoenbaum G. Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards. Nature Neuroscience. 2007;10: 1615– 1624.</ref>. Dopaminergic neurons send diffuse projections to [[striatum]] (nigrostriatal pathway) and prefrontal cortex (mesocortical pathway) and thereby transmit a pleasure values or [[learning|teaching]] signal to a variety of brain regions, for learning, stimulus evaluation, and directed action. <ref>Volkow ND, Wang GJ, Telang F, et al. Dopamine increases in striatum do not elicit craving in cocaine abusers unless they are coupled with cocaine cues. NeuroImage. 2008;39: 1266– 1273)</ref>.
 
Dopamine agonists can cause pathological gambling behavior<ref>Gallagher DA, O’Sullivan SS, Evans AH, Lees AJ, Schrag A. Pathological gambling in Parkinson’s disease: Risk factors and differences from dopamine dysregulation An analysis of published case series. Movement Disorders. 2007;22: 1757– 1763.</ref>. This finding is in support of the theory that people with less [[rewards]] will try to enhance the rewards, by taking more risks.