Open main menu

Deliberative Democracy Institiute Wiki β

Rewards

Revision as of 00:07, 30 June 2014 by WinSysop (talk | contribs)

Dopamine

Dopamine is involved in reward. Dopamine appear to play a central role in cost-benefit analysis[1]. It seems to be part of the reward sytem There appear to be multiple dopamine-sensitive decision regions.

Dopamine depletion in ventral striatum reduces propensity for physical effort [2] D1 (dopamine 1) receptor blockade in ACC reduces preference for expending effort for rats[3].It is non-discriminative between reward types, dopaminergic firing in VTA does appear to reflect subjective (action) value with integrated responses to both delay and reward amount[4]. Dopaminergic neurons send diffuse projections to striatum (nigrostriatal pathway) and prefrontal cortex (mesocortical pathway) and thereby transmit a pleasure values or teaching signal to a variety of brain regions, for learning, stimulus evaluation, and directed action. [5].

Hormones effects

There are substantial hormonal influences on behavior. For example, circulating hormones such as leptin and ghrelin act as satiety and hunger signals, reporting the status of body energy reserves (e.g. adipose tissue), energy requirements, and acute nutrient intake to hypothalamic and midbrain targets in the central nervous system that regulate feeding behavior[6]. They also act on brain regions (in particular dopaminoceptive areas) implicated in human decision-making[7][8].

References

  1. Phillips PEM, Walton ME, Jhou TC. Calculating utility: Preclinical evidence for cost– benefit analysis by mesolimbic dopamine. Psychopharmacology. 2007;191: 483– 495.
  2. Salamone JD, Correa M, Farrar A, Mingote SM. Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology. 2007;191: 461– 482.
  3. Schweimer J, Hauber W. Dopamine D1 receptors in the anterior cingulate cortex regulate effort-based decision-making. Learning & Memory. 2006;13: 777–782
  4. Roesch MR, Calu DJ, Schoenbaum G. Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards. Nature Neuroscience. 2007;10: 1615– 1624.
  5. Volkow ND, Wang GJ, Telang F, et al. Dopamine increases in striatum do not elicit craving in cocaine abusers unless they are coupled with cocaine cues. NeuroImage. 2008;39: 1266– 1273)
  6. Korotkova, Sergeeva, Eriksson et al., 2003
  7. Hommel, Trinko, Sears et al., 2006
  8. Krügel, Schraft, Kittner et al., 2003